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Alfven wave tomography for cold MHD plasmas

1.Y. Dodin and N.J. Fisch

Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543

Alfven waves propagation in slightly nonuniform cold plasmas is studied by means of
ideal magnetohydrodynamics (MHD) nonlinear equations. The evolution of the MHD
spectrum is shown to be governed by a matrix linear differential equation with constant
coefficients determined by the spectrum of quasi-static plasma density perturbations. The
Alfven waves are shown not affect the plasma density inhomogeneities, as they scatter
off of them. The application of the MHD spectrum evolution equation to the inverse
scattering problem allows tomographic measurements of the plasma density profile by

scanning the plasma volume with Alfven radiation.
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I. INTRODUCTION

The problem of finding the eigenwaves of various plasmas is most easily
considered under the strict assumption of homogeneous plasma properties. Such
approach allows significant simplification of dynamic equations leading to relatively
simple dispersion relations for the waves propagating in uniform plasmas, further called
the partial waves. However, the assumption of plasma homogeneity is often inapplicable
to real systems.

Consider a plasma medium, which is adequately described in terms of ideal
magnetohydrodynamics (MHD). One of the features of MHD-like plasmas consists of the
fact that magnetoactive collisionless plasmas can sustain steady state localized structures,
maintaining total (kinetic plus magnetic) pressure balance with the ambient media. Such
structures are often called magnetic bubbles (for density depressions) or magnetic bottles
(for enhanced density) [1] because of the disturbance of the magnetic field caused by the
diamagnetic effect of their localized plasma density changes. The spatial distribution of
magnetic bubbles (or bottles) represents a nonuniform plasma pressure profile, whose

spatial harmonics can be treated as static waves described by the dispersion relation

a)(k) =0. From this point of view, the problem of finding the eigenmodes of ideal

nonuniform MHD plasma can be considered in terms of MHD partial waves, scattering
on plasma inhomogeneities (magnetic bubbles or bottles), as long as the partial waves
remain well defined, i.e. the plasma pressure inhomogeneity remain small enough.
Therefore, the lowest-order effect coming into play when the plasma density

inhomogeneity is taken into account can be expected to be the coupling of conventional



Alfven waves, which represent the partial waves of MHD plasmas, on the quasi-static
waves of plasma density perturbations described above.

In this paper, we consider the evolution of Alfven waves spectrum specifically
due to their scattering on quasi-static perturbations of plasma density in a cold slightly
nonuniform ideal MHD plasma. (The term “‘slightly nonuniform” refers to the amplitude
of plasma density perturbations, but does not limit the ratio of the wavelength and the
characteristic spatial scale of the density perturbations considered, which is allowed to be
of the order of unity.) This problem is a three-wave interaction problem, where one of the
waves has zero frequency and nonzero wave vector and the two other waves are
conventional Alfven waves, whose dispersion relations are derived under the assumption
of uniform plasma medium. Various nonlinear and three-wave interactions in
magnetohydrodynamics have been intensively studied; for detailed review, see e.g., Ref.
2 and the references cited therein. In particular, the effect of Bragg scattering of MHD
waves on spatial lattices of plasma structure with given wave numbers, has been
experimentally studied in the context of ionospheric irregularities [3-4].

In the present paper, we find explicit solutions for the problem of partial waves
scattering in cold slightly nonuniform plasma. On the other hand, inverting the problem,
one can get the full information about the density spatial distribution out of the obtained
scattering properties of given plasmas. In principle, these results allow realization of
quasi-linear Alfven tomography, i.e. the procedure of obtaining the plasma density profile
from measurements of the Alfven spectrum transformation. We call the proposed
tomography quasi-linear because despite the nonlinearity of the MHD equations used, the

final equation for the Alfven spectrum is shown to be linear, which makes its solving



procedure equivalent to the standard tomography problem solution [5-6]. Tomographic
measurements are currently being used, for example, in magnetic fusion plasma devices
with application of x-ray waves for measuring the electron temperature in hot core of
tokamak plasma [7-9] and in ionospheric electron density measurements in radio-
frequency range [10-12]. We demonstrate that in cold slightly nonuniform plasmas,
Alfven radiation can also be used for similar purposes broadening the spectral limitations
of plasma tomography.

The paper is arranged as follows: In Sec. II, we introduce the nonlinear MHD
equations and define the types of partial waves and ways of their interaction. In Sec. III,
we derive the Hamiltonian evolution equation for Alfven waves spectrum. We prove that
in cold plasma limit, the Hamiltonian remains constant (under the assumption of small
waves amplitudes), and is determined by quasi-static plasma density perturbations not
changing in time. The solution of the Alfven tomography problem is discussed in Sec.

IV. In Sec. V, we summarize the main results of our work.

II. MOTION EQUATIONS AND PARTIAL WAVES OF MHD PLASMA

Let us consider plasma immersed in a static uniform external magnetic field
B, =B,z, 0B, =0, where Z is the unit vector along the z-axis. Under the assumption of
the MHD-like plasma motion, in the cold plasma limit, when the plasma kinetic pressure

p is negligible compared with the pressure of the external magnetic field B. /87T



(8 :87Tp/ BO2 <<1), the full set of plasma motion equations can be written in the

following form:

0,U-VZ(Oxb)xz=N,, 1)
0b-0Ox(Ux2)=N,, )
ox+0=N,. (3

Here U is the plasma flow velocity, b=B_/B, is the normalized magnetic field
perturbation, Y = 0_/p, is the density perturbation normalized on the average plasma

density p,, and V7 =B} /47100 is the squared Alfven velocity. Nonlinear “forces”

written in the right-hand sides of the equations can be expressed as

Ny ==x0,U - (UI)(1+ x)U+VZ(Oxb)xz, @
N, =0x(Uxb), (5)
N, =-00fxU). (6)

For our further purposes, it is more convenient to rewrite the equations (1-2), (4-5) in a

matrix form introducing a vector of the transverse flow velocity U, =U X+U y:
DI, =N,, (7)

where differential operator D is given by

07 -V2 (02 +02) V202,
D = 212 2 2 2 2 (8)
~V20?, 0p -V (02, +02)
and transverse nonlinear force N can be expressed as
Ny =0Ny,+V7(OxN,)xZ. (9)



Consider now the case when plasma inhomogeneity is purely oscillatory in time
and space. Then, in the linear approximation one can treat Alfven velocity as constant

and since N is negligible, the linearized equation (7) represents a wave equation for an

anisotropic medium. Looking for the eigenstate of plasma motion governed by (7) in the

form of a plane wave
U, =UY exp(-iot +ik , xr, +ik 2), U = const (10)
(here k,=kX+ky, rp=xx+yy, k =k[Z and k is the three-dimensional wave

vector) one immediately gets the well-known dispersion relations for compressional

Alfven waves (further called the CA-modes)
a (k) =KV (11
and the shear Alfven waves (SA-modes) correspondingly:
af (k) =KV (12)
The plane wave representation (10) of MHD plasma eigenmodes breaks down as
soon as Alfven velocity becomes location-dependent. As long as the inhomogeneity

remains smooth (kL >>1, L = p, / | 0o,

), the WKB theory adequately describes the wave

propagation process, and the representation (10) with the wave amplitude U(DO) slowly

changing in space stays a good approximation for the eigenmodes of MHD plasma. No
waves scattering is taken place in this case. On the other hand, as soon as the wavelength
271k becomes comparable with the spatial scale of density inhomogeneity (KL ~1), the
geometrical optics (or WKB approximation) breaks down and different approach

becomes needed for describing the waves propagation in nonuniform plasmas.



For the purpose of considering arbitrary values of KL, we note that the modes
(11-12) do not form a complete set of linear solutions for all MHD plasma perturbations,
and static density perturbations should be treated separately from Alfven waves. Indeed,
as soon as one introduces a nonzero plasma temperature (which is still allowed to be

infinitely small to satisfy the condition of negligible plasma £ ), MHD plasma becomes

capable of containing steady state localized structures, maintaining the total pressure

balance with the ambient medium described by the equilibrium condition

B?)_(BM)B
D(p+§T]_T. (13)

Such structures are often called magnetic bubbles [1] (or magnetic bottles, depending on
whether plasma density is depressed or enhanced inside a structure). Magnetic bubbles
are often observed in space [13-15], created artificially in the Earth ionosphere [3-4] and
laboratory conditions [16] and generally represent a certain scientific interest for
astrophysics and plasma science.

From (13), it follows that as long as the plasma pressure remains isotropic, no
equilibrium pressure variation along the field lines can be maintained self-consistently,
which means that in isotropic plasmas, magnetic bubbles can only be two-dimensional
(2D) structures. Pressure anisotropy is often present in real plasmas [14] but since its
level is usually low, bubbles tend to elongate in the direction of external field [3, 14], so
that their longitudinal size is significantly larger than the transverse one. Thus, for
simplicity we will assume the bubbles to be completely two-dimensional, so that for

small variations of plasma pressure the equilibrium condition (13) is equivalent to

— 3B
b=-z 5 X (14



where )= O(l) is introduced through the plasma equation of state p = p, ( o/ ,Oo)y. For

our purposes, it is convenient to think of such 2D small-amplitude static plasma density
perturbations as of static waves (S-modes), which dispersion relation is given by

ws(k)=0, Kk =0. (15)

Low-amplitude Alfven waves (11-12) and S-modes (15) represent the partial

waves of MHD plasmas meaning that each of these waves is an eigenmode of a linear

MHD system only where modes coupling is negligible, but, as soon as the nonlinear drive

N, is taken into account, these waves generally cannot exist independently. Consider a
“pumping” Alfven wave with frequency @), and wave vector K, propagating in a region

of spatially modulated plasma density and let the modulation be purely sinusoidal with
the wave vector Kg. The presence of quadratic nonlinearity in the expression for N
shows that the energy of the pumping wave will be transferred into a scattered wave with
the frequency and the wave vector given by

ke =k, +Ks. (16)
Eqgs. (16) represent the conditions of resonant three-waves interaction, or well-known
Bragg scattering of pumping Alfven wave on a spatial plasma structure. The scattered
wave, in turn, is also scattered by the lattice with the wave vector kg producing a third
wave and amplifying the pumping one etc, so that the amplitudes of the waves will
evolve in time. In the next sections, we show the explicit way of finding the scattering

properties of arbitrarily modulated plasma density in the case when the amplitudes of

these modulations remain small.



The conditions for resonant interaction (16) indicate the possible pairs of Alfven
linear modes, which can couple to the inhomogeneities of plasma density. For scattering

of one SA-mode into another SA-mode, the necessary conditions of coupling
kll,SA,l = k||,SA,2 > k 0,81 = k 0,8A,2 + kS (17)

show that every shear Alfven wave is potentially unstable to transformation into another
similar wave with the same parallel and different transverse wave numbers. On the
contrary, in CA « SA scattering process, conditions (16) combined with the dispersion

relations (11-12) require the equalities
k||?CA +Kica = k|fs«1 Kica =Kpsar  Koea =Kps tKs, (18)
which lead to the additional conditions on wave numbers:
Koca =0, Kosa = Ks. (19)
In other words, CA-wave with nonzero transverse wave number cannot interact

resonantly with SA-waves via Bragg scattering on static density perturbations. The third

type of waves transformation, namely CA ~ CA process, simultaneously requires

2
k||,CA,1 = k||,CA,2 ' Kocar =Koz tKs, kéA,l = (kCA,Z + ks) , (20)
and, similarly to CA « CA process, for arbitrary K (unless Kg > 2K ,,), there always

exists a scattered CA-wave meaning that the pumping CA-wave is always unstable to

Bragg scattering on plasma density perturbations.

III. EVOLUTION OF MHD SPECTRUM IN BRAGG SCATTERING PROCESS



In order to derive the equation for the evolution of Alfven spectrum in Bragg

scattering process, let us represent the transverse plasma flow velocity in the form
U=[d,k| Ugy (rt)e ™ +ug,, (r)e™® +ug, (r) |é, (@)

where the partial modes spectra U.,, Ug, and Ug are generally slow functions of time

and space compared with the characteristic frequency of Alfven waves and the largest

wavelength being considered. Let us then introduce 2D “polarization” vectors & and
scalar wave amplitudes U, for each partial wave a according to U, , =&, U, , where
for compressional Alfven waves polarization is defined as &g, =k ,/k; and for shear
Alfven waves as &g, =2xk/k, . Considering the Fourier representation of (7) in high-

frequency (Alfven) part of flow velocity spectrum and multiplying it by polarization

vector one gets the equation for the amplitude of each of CA- and SA-spectra:

dUk :i gl:n\lD w,k
dt 2w

(22)

Here d/dt:6/()t+Vgr (I is the convective time derivative along wave package

trajectory, V is the group velocity, N, is the Fourier-transformed right-hand side of

or
(7); frequency w is calculated according with the one of the dispersion relations (11-12)
depending on the wave considered.

Consider the density perturbations of CA- and S-modes and velocity perturbations
for SA-modes (density variations are zero for linear shear Alfven waves) to be of the

same order, which we denote with a small parameter £. The variations of the magnetic

field of CA- and SA-waves are, then, bCASA = O(&‘) , but for S-modes, the magnetic field

is unchanged in the limit of small [

10



bs =O(&8) <<be a- (23)
Thus, although S-modes disturb the plasma density, they do not change the magnetic
field in cold plasmas. Relation (23) allows significant simplification of the nonlinear
force N, because in this case the only nonlinear drive comes from the term x0,U.
Under the assumption of infinitely small [, one can then rewrite (22) as an integral
equation

du,
dt

ia) I I I
:?J‘dzkm(gm))(s(km_km)uk" (24)
where k' =K}, +kz and X is the static density perturbations spectrum. The equivalent

representation of (24) has a form

du,
dt

=HU,, (25)
where operator H defined over the set {¢n (k D) , =0, 1} , has matrix elements

Ho == 2 [, 0% (88 € (0s) X (02— B (k). (26)

Consider now the limitations of the proposed approach. Equation (24-25) is
derived under the assumption of resonant coupling, meaning that only those waves,
whose frequencies and wave vectors strictly satisfy (16), are considered as interacting
with each other. Certainly, this assumption is only satisfied for sufficiently large systems
compared with the characteristic Alfven wavelength 277k™" and on large time scales of
interaction compared with the characteristic oscillation period 27mv™. The former
condition follows from the requirement of spatial resonance, which can now be rederived
directly from (24). Indeed, the amplitude of Alfven waves with a wave vector K is

changed by the interaction with a wave having vector K’ only if the spectral amplitude of

11



static density perturbations Y, is nonzero at K —k', meaning that there exists a spatial

lattice satisfying the spatial resonant interaction condition (16). Note that in (24) and
(26), the integration in K-space is taken only over the subspace of transverse vectors K,
since static density perturbations are assumed purely two-dimensional and the
longitudinal wave number does not change in Bragg scattering process.

The temporal resonance condition (16) requiring the lower limitations on the
interaction time in the proposed approach, however, can not be derived from the obtained
equations, since it has already been taken into account in the derivation, and thus should
be considered separately. For SA « SA scattering, this condition is satisfied automatically
as soon as the space resonance requirement is fulfilled. Indeed, the latter assumes

conservation of the parallel wave number of scattering wave (K, = 0 = K o, =K s5)

which according to (12) is equivalent to the temporal resonance condition. For CA - CA
interaction, however, the situation is different because frequencies of compressional
waves are determined by the transverse wave numbers as well. On the other hand, if one
assumes the interaction of CA-waves with given K., Egs. (24-26) become applicable, too.
Such a situation occurs, for example, in the scattering of a plane compressional wave
with a given wave vector. In this case, the modes that are born in the Bragg scattering
process will automatically get the same K- though the direction of their wave vectors will
be rotated in Kk -subspace depending on the plasma density profile.

Consider now the evolution of Alfven spectrum in the frame moving with a group

velocity with respect to the laboratory set of coordinates. For each spatial harmonic ¢,

12



of Alfven spectrum in new frame of reference U, (r ,t) =y, (r - Vgrt,t) , one then gets the

well-known Shrodinger equation

i%:

ot ¥ (27)

where the eigenvalues of the Hamiltonian H represent nothing Doppler-shifted
frequencies of spectrum oscillations. Similar to the original Hamiltonian of quantum
mechanics, H is Hermitian as can be seen directly from its definition (26). Since its
eigenvalues are real, there follows the absolute stability of the transformed spectrum
under the adopted approximation. Also, like the corresponding conservation law for the

quantum mechanics {/ -function, the Alfven spectrum conserves the “normalization”
J'|z//k|2 d% =const.

Equation (24-27) needs to be solved together with the equation describing the
time evolution of the density fluctuations spectrum YXg (k) The latter equation can be

obtained by Fourier transformation of (3) where only the resonant terms governing low-
frequency drive must be kept. Alfven wave density perturbations spectrum Y, can then
be related to the flow velocity spectrum U, through ), =k U, /w, which gives for

quasi-static density perturbations spectrum

0 Xsk, = {ks Wsy, +%J.d3k |:(ks Wenkgk, -k )(k Weak ) + C-C-]}- (28)

The right-hand side of (28) can be evaluated through Fourier representation of (2). In
order to evaluate the terms that contain harmonics of the high-frequency magnetic field,
note that for an Alfven wave with given @ and K, the corresponding perturbation of the

field is given by

13



b, =2 S i (29)

as follows from linear form of (2). Substituting (29) into nonlinear equation (2) and
performing the integration over all K with resonant conditions (16) taken into account,
one can show that at low-frequency, magnetic field spectrum change is then determined

by the evolution of quasi-static plasma density profile:
0y =0, s +O(£°)+O(&8) =0, xe (30)
Since bg = 0(5,8) and 0, = O(S) for spectral quantities, the change of the field produced

by evolution of S-modes can be neglected, so the quasi-static plasma density profile

remains unchanged (9, x5, =0). Thus,

H =const, (31)

making the equation (24-27) self-consistent and linear.

IV. APLICATIONS OF MHD SPECTRUM EVOLUTION EQUATION. ALFVEN

WAVE TOMOGRAPHY

The fact that the matrix equations (24-25) are linear opens up the possibility of
tomographic applications. Consider, first, harmonic spatial modulation of the plasma

density:
Xs(ky)=g(8(ky—ks)+5(k, —ks)) (31)

leading to the following form of the equation (24):

14



: iw
U =e—(U,_ a +U,, a.), 32
c=e (Vo +Ua) (32)

where a, =&, [,.,_ =O(1) are polarization factors. The equation (32) can only be
solved together with similar equations for U,,, , which, in turn, require solving the
equations for U,,,  with higher n. Therefore, the complete set of equations (32) is

infinite (N =0,1...00) and, thus, hard to analyze for arbitrary initial conditions. However,

an approximate solution of (32) can be found for limited-time scattering of a plane wave
with a given wave vector K. The first harmonics that will be generated during the

interaction process will be shifted in k-space only on single value of k¢ from k. These
harmonics will later produce the waves having K-vectors shifted on +2k o, which then
give rise to the waves with K+nkg, n=23,..., etc. Hence, in the beginning of the

scattering process, harmonics with high n do not have sufficient time for being pumped
and thus can be neglected under the approximation of limited scattering time. In the first
(linear) stage of interaction, the harmonics with n=0,%£1 are enough for an adequate
description of the scattering process. Then, solving Eq. (32) one gets for the amplitudes

of these waves:

—cwt, U = ie*Tt, (33)

for “pump” wave with initial amplitude U, =1. Formulas (33) are valid until the

dynamics of U,,, is entirely determined by the value of U, and the second harmonics

. . -1
Ui.p, remain small, namely on time scales t<< (8&)) . A more careful treatment

requires taking a larger number of higher harmonics into account.

15



Until now, we have been solving the direct scattering problem obtaining the
amplitudes of scattered Alfven radiation from a known plasma density profile. However,
the inverse scattering problem might also be of certain interest especially because of its
certain possible practical applications. Indeed, if one knows the spectra of Alfven
radiation before and after scattering, in principle, one can reconstruct the plasma density
profile from these data. The solution of the problem consists of inverting the equation

(24-25), in order to obtain the matrix H, from which the static density perturbation

spectrum Xg (IZ) can be derived:

As (kZ,D _km) = _C%(E.ll |:&2)_1 @, (kl,D) Hom ¢:n (kz,m) : (34)

In order to obtain the matrix elements H . from the results of Alfven waves scattering,
one can employ a known Alfven wave source, comprised of wave packets characterized
by their initial spectrum U” . Formal integration of (25) on a time interval t [J (0, T ) gives
the expression for the final spectral function Uéf) , which can be written in the following
form:

ul=mul, M =exp(-iH7). (35)
Scanning the plasma with N wave packets with different initial conditions U, where N

is the number of basis functions @, (kD) used for spectrum representation, one gets

enough independent equations for obtaining the elements of the matrix M. (In order to
get the exact density profile, one needs N — o), Taking the matrix logarithm of M, one

then gets the Hamiltonian H, and, therefore, obtains the density spectrum (34).

16



The proposed procedure solves the general inverse scattering or tomography problem [5-
6], i.e., the multiple scanning measurements allow reconstruction of the static density
perturbations in a cold plasma. Other tomographic methods actively used in plasmas
include the application of x-ray waves for measuring the electron temperature in hot core
of a tokamak plasma [7-9] and in ionospheric electron density measurements in the radio-
frequency range [10-12]. The Alfven radiation tomography discussed in the present work
provides, in particular, the opportunity for studying density profiles in cold plasmas.
Practical difficulties that might be encountered in the present tomography
problem are likely similar to the difficulties encountered in other tomographic
applications. Since the complex logarithmic function is not defined uniquely, an
inevitable uncertainty in tomographic reconstruction arises as one tries to obtain the
matrix H from the matrix M. However, using the linear stage of spectrum transformation
discussed above, or scanning the plasma volume with Alfven waves of different
frequencies, one can, in principle, further constrain possible reconstructions. The
additional problems of Alfven tomography that must be solved before the technique can
be applied to real systems includes taking into account both thermal corrections and other

nonlinear MHD effects [2].

V. SUMMARY

In this article, we investigated the nonlinear coupling of Alfven waves to

inhomogeneities of cold collisionless plasmas. We demonstrated that in the limit of

17



negligible plasma pressure (5 — 0), the plasma inhomogeneities do not evolve in the

interaction, so that the Alfven wave coupling can be considered as Bragg scattering on
fixed spatial lattices of plasma. In this case, the Hamiltonian (26) governing the evolution
of the MHD spectrum remains constant, which makes the corresponding evolution
equation (24-27) linear. Representing of plasma quantities by their Fourier spectra leads

to simple solution of the direct scattering problem.

In particular, we obtained the scattering properties of a given system including the case of
a static sinusoidal plasma density perturbation. Knowing the spectrum of the incident and
scattered Alfven waves, we derived an expression for the Hamiltonian, from which the
static density perturbations spectrum can be found easily. The solution of this inverse
scattering problem indicates how tomographic reconstruction of plasma density

perturbations might be achieved by means of imposed Alfven radiation.
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